Securing devices
or profits?

Examining the device security of a network appliance vendor

Hal Martin

OrangeCon 2024

Agenda

e Who are Meraki?
e Motivation

e Bootloaders

e Target devices
o 777

Profit

Who are Meraki?

e Foundedin 2006
e Acquired by Cisco in 2012
e Sell cloud managed networking devices (routers, switches, APs, cameras,

Sensors)

s

merakl ¢ BIEVEEs

Meraki business model

You: Managing & monitoring network assets is hard &

Meraki: We'll punch through your NAT with a tunnel to
manage them from “the cloud”

You: buy the hardware & &

You: buy a license for the hardware &

Meraki: provide a dashboard to manage your network

You, aftergolving your network asset management problem

“Cisco Meraki may find it necessary to discontinue
products for a number of reasons, including product
line enhancements, market demand, technology
innovation, or if the product simply matures over time
and needs to be replaced by something functionally
richer.”

Forget the cloud?

e Manage it yourself? " cuSTOMER

o You can only manage devices from the Meraki
dashboard (nice SPOF!)

“Meraki switches are only manageable through the dashboard and
you need a license for that.”

2
BUT WHATIE1 WANT
TO MANAGE THEM MYSELF?

ZMERAKI

N

https://community.meraki.com/t5/Switching/Managing-Switch-without-License/m-p/108768/highlight/true#M7927 T“AT'S THE "EAT PABT Yo“ ﬁ0"|T
imgflip.eont - | J i 8

tl:dr

e Late-stage capitalism: rent your devices
o An expensive lease

e Meraki sales: deprecating existing products
<9
o e-waste?

e Secondary market for resale? lol. Imao.

o “Claimed” devices cannot be reset and managed by a
new owner:
“If you can claim it into a dashboard (which is only
possible after the previous owner unclaimed it)”

https://community.meraki.com/t5/Switching/Managing-Switch-without-License/m-p/44556/highlight/true#M3719
https://community.meraki.com/t5/Off-the-Stack/It-s-beginning-to-look-a-lot-like-Switchmas/m-p/34263

Motivation

e Bought my first claimed Meraki

switch in 2019
o Wanted 10G networking on the cheap

e Learned more about their practices

and business model
o e-waste? Yes, please!

e Develop and maintain a FLOSS
firmware for older switch models

e Started researching the security of

their products

Motivation: GPL Infringement

“Unfortunately, GPL source code for the MS42 is no longer available.
We provide GPL source code for up to 3 years after a product's end-of-sale

announcement.
The announced end-of-sale date for the MS42 was Apr 2014"

This was their reply to my first GPL request. It is prima facie GPL infringement as they still released
firmware updates for the MS42 at the time of this request

Bootloaders: U-Boot?

e Bootloader targeting embedded devices

o Firstreleased in 1999
o Supports many architectures

e (Usually) loaded by SoC Boot ROM

e May initialise hardware
o DRAM training, 10 (e.g. networking, UART), storage (NOR/NAND/MMC/SATA/USB)

e (Usually) includes command line with simple scripting
e Conceptually similar to BIOS/UEFI for embedded systems

SPL . Payload
[Boot ROM H (optional) H U-Boot 0S)

Where is UART?

?

Where is UART

Tt

S,

L
» |

[

FELEEEE

0¥230820
1¥231820

Where is UART?

GL1P2047
* ACE 1712W

Reverse engineering resources

e U-Bootis GPL licensed
e Meraki take 12+ months on average to provide source code

But!

e NAND is unencrypted &3

e @

Target devices

Wired routers Cellular gateways

o /3 o MG21T
o /3C o MG41

Common bootloader weaknesses

e Interrupt boot and get a prompt
e Environment stored on or sourced from NVRAM
e Compile/flash the bootloader from source

Method

Boot delay

Modify the environment

Recompile and overwrite the bootloader

Bootloader command line

CONFIG_CMDLINE=y
CONFIG_HUSH_PARSER=y
CONFIG_SYS_PROMPT="=>"

Autoboot

CONFIG_AUTOBOOT=y
CONFIG_AUTOBOOT_KEYED=y
CONFIG_AUTOBOOT_PROMPT="Autoboot in %d secon
CONFIG_AUTOBOOT_ENCRYPTION is not set
CONFIG_AUTOBOOT_DELAY_STR="

CONFIG_AUTOBOOT_STOP_STR="xyzzy"

CONFIG_AUTOBOOT_KEYED_CTRLC is not set

Boot delay

#

Environment

- v .
CONFIG_BOOTDELAY=0 4

i y
% MAKE GIFS AT GIFSOUP.COM

u-boot evolution

pre-2017 2017+

#define CONFIG_AUTOBOOT_STOP_STR "xyzzy" CONFIG_BOOTDELAY=0

Allows interrupting autoboot with the Can no longer interrupt boot
string “xyzzy” on UART

8733823b 62 6f 6F ds "bootstopkey"
74 73 74
6f 70 6b ...
87338247 78 ?? 78h X
87338248 79 ?? 79h y
87338249 7a ?? 7Ah z
8733824a 7a ?? 7Ah 7
8733824b 79 ?2? 79h y

8733824c

CONFIG_ENV_IS_NOWHERE

e The environment is compiled into u-boot
e No possibility to modlfy, or perS|st changes

i, R

EPORT
R WEEK

U-Boot situation

Method Target device

Boot delay > removed

Modify the environment X compiled into u-boot
Recompile and overwrite the bootloader ey

Secure boot?

ubi@: max/mean erase counter: 78/3@, WL threshold: 4096, image sequence number: 578697608
ubi@: available PEBs: 397, total reserved PEBs: 499, PEBs reserved for bad PEB handling: 20

Secure boot enabled.

Read @ bytes from volume part.safe to 84000000
No size specified -> Using max size (25628672)
Valid image

Loading kernel from FIT Image at 84000028

U-Boot situation

Method Target device

Boot delay > removed

Modify the environment X compiled into u-boot
Recompile and overwrite the bootloader X secure boot

U-Boot verified boot

e U-Boot supports verifying signatures in FIT images

e Tampering with signed FIT images is not possible

o Configurations are signed
o Configuration contains hash of kernel/initrd/fdt
o Not possible to swap out images in the configuration or add more configurations

e U-Boot defaults to checking signatures if verify is unset in environment
e Vendors use U-Boot’s verified boot

Vendors use U-Boot verified boot, right?

=> printenv

baudrate=115200

boot_part=ubi read $loadaddr $part; bootm $loadaddr#$itb_config

boot sianedpart=ubi_read $loadaddr $part; validate $loadaddr && bootm $imgaddr#$itb_config
bootcmd=xrun meraki_boot

bootdelay=5

bootkernell=setenv part part.safe; run boot_part

bootkernel2=setenv part part.old; run boot_part

itb_config=config@l

loadaddr=0x84000000

machid=8010001

meraki_boot=run set_bootargs; run set_ubi; boot_meraki_qca; run bootkernell; run bootkernel2
part=part.safe

scrloadaddr=0x81000000

scrname=boot.scr

set_bootargs=setenv bootargs loader=u-boot maxcpus=1

set_ubi=setenv mtdids nand@=nand@; setenv mtdparts mtdparts=nand@:@0x7000000@@0xc@@000 (ubi); ubi part ubi

PBL

SBL

J

U-Boot

~

check/force secure
boot on

boot diagnostic }

boot part.new if
upgrading

boot_meraki_gca

if node specific
unlock exists,
chainload u-boot

run boot_signedpart

No obvious security flaws here

How about now?

R e el static int do_meraki_qgca_boot(cmd_tbl_t * cmdtp, int flag,
arge = 1; . *

P T ER— int argc, char * const argv[])

29 if (argv != @) {

Bt /* unsupported boards */

2) switch(get_meraki_product_id()) {

B T D) case MERAKI_BOARD_STINKBUG:

:: ‘.-“(;‘ t *)FUN_8730089c(8,7, (uint *)0x@,0, (uint *)((int)dusta + 3),1); case MERAKI_BOARD_LADYBUG

Bl e i et RASEISSREE R case MERAKI_BOARD_NOISY_CRICKET:
rodct_fusber = uStack c >> ox18; case MERAKI_BOARD_YOWIE:

| if (product_number 1= 1) { case MERAKI_BOARD_BIGFOOT:

41 Fm787331fcc(u5‘3k1— r1_ee,uvars,product_number); case MERAKI_BOARD_SASQUA‘I’CH

42 {VarZ

8 s - ars; case MERAKI_BOARD_WOOKIE:
:; ; goto LAB_873018b0; return O'

B default:

4_8 FUN_87331fcc(DAT_87321a4@,pivar2,uvars,product_number); break;

/* Check 0: check/force secure boot on */
force_secboot();

Meraki provided the Z3 U-Boot source code after a delay of more than 6 months

Product ID

static const struct product_map_entry product_mapl] = {

/* BOARD=insect */

%"merakl _Stinkbug", 30, "STINKBUG # *, MERAKI_BOARD_STINKBUG, "config@1" },
'meraki_Ladybug", 31, "LADYBUG # ", MERAKI_BOARD_ LADYBUG, "config@3"},

} 'meraki_Noisy_ Cricket", 32, "NOISY CRICKET # ", MERAKI_BOARD_NOISY_ CRICKET, "config@2" },
"meraki_Maggot’, 37, "MAGGOT#" MERAKI_BOARD_ MAGGOT, "config@4"

{"merak| Dungbeetle Omni", 38, "DUNGBEETLE OMNI #", MERAKI_BOARD_ DUNGBEETLE_ OMNI, "config@5" },

% 'meraki_Dungbeetle_ Patch’, 39, "DUNGBEETLE PATCH # ", MERAKI_BOARD_DUNGBEETLE_ PATCH, "con ig@6"},
"meraki_Grub", 44, "GRUB # ", MERAKI_BOARD_GRUSB, conﬂg@

} 'meraki_Toe_biter_Omni", 45, "TOE_BITER OMNI # ", MERAKI_BOARD_TOE_BITER_OMN], "‘config@5" },
"meraki_Toe_biter_Patch’, 46, "TOE_BITER PATCH # ", MERAKI_BOARD_TOE_BITER_PATCH, "confi Ig@6" },

/* BOARD=wired-arm-qca */

{"merakl Fuzzy_Crlcket 36, "FUZZY CRICKET # ", MERAKI_BOARD_ FUZZY_CRICKET, "config@1"},

} 'meraki_Fairyfly", 43, "FAIRYFLY # ", MERAKI_BOARD_FAIRYFLY, ‘config@?2"
"meraki_Heart_of_Gold", 42, "HOG # ", MERAKI_BOARD_HEART_OF_GOLD, "conﬂg@3"}

{ NULL, MERAKI_BOARD_UNKNOWN },

Where is the product ID?

-'r_ (TH{/

=
(o}
5 owedneed

LAN2 " LANT

00000000
00000010
00000020
*

00000040
00000050
00000060
0000070
00000080
00000090
*

200000b0o
000000Cco
000000d0o

|5311.*. .meraki_2Z|

|5311.*. .mexraki_2Z|

000000Co
000000d0o

73 (IPQ4029)

PBL

SBL

h 4

Bootloader
(u-boot)

Product
model

Signature verified
by Boot ROM

Linux
(unverified)

Linux
(signature verified)

U-Boot 2017.07-RELEASE-g39cabb9bf3 (May 24 2018
- 14:07:32 -0700)

DRAM: 242 MiB

machid 0x8010001

Product: meraki Fuzzy Cricket
NAND: ONFI device found

ID = 1d80f101

Vendor =1
Device = f1l
128 MiB

Using default environment

In: serial

Out: serial

Err: serial

machid: 8010001

ubiO: (removed for space)

Secure boot enabled.

Read 0 bytes from volume part.safe to 84000000
No size specified -> Using max size (16584704)
Valid image

Loading kernel from FIT Image at 84000028

U-Boot 2017.07-RELEASE-g39cabb9bf3 (May 24 2018
- 14:07:32 -0700)

DRAM: 242 MiB

machid 0x8010001
Product: meraki Stinkbug
NAND: ONFI device found
ID = 1d80f101

Vendor =1
Device = f1l
128 MiB

Using default environment

In: serial

Out: serial

Err: serial

machid: 8010001

ubiO: (removed for space)

Read 0 bytes from volume part.safe to 84000000
No size specified -> Using max size (16584704)
Wrong Image Format for bootm command

ERROR: can't get kernel image!

Read 0 bytes from volume part.old to 84000000
No size specified -> Using max size (16547840)
Wrong Image Format for bootm command
ERROR: can't get kernel image!
resetting

Situation

Secure boot is enabled
Bootloader chain is signed
U-Boot supports booting unsigned images

Product ID is stored on external EEPROM with no encryption or signature

a. Devices manufactured after 2017 have two copies in EEPROM
b. Neither is signed; U-Boot doesn’t even compare them

Product ID -> change to device without secure boot
U-Boot stops verifying signature of payload

> wnNn -

o o

Next steps

1.
2.
3.
4.
d.

Compile U-Boot from GPL source code
Package into flattened device tree (FIT) image
Put into ubivol “part.safe”

U-Boot will now boot this without verification
Unlocked bootloader!

Can Meraki patch it?

e Meraki Eol'd 802.11ac APs without secure
boot

e U-Boot builds after 2019 don't support these
devices, vulnerable code path removed

e Multiple devices use the same signing certificate

Version Rollback Feature Disabled

There is no anti-rollback protection!

IPQ40xx devices affected

Device Vulnerable Device Vulnerable
Z3 MG21
Z3C MG41 X

Meraki Go

Meraki, but cheaper

Devices managed through an app
No Dashboard

Device still connects to the cloud,
Meraki push a config

“As we look to the future, we will no longer be
developing new Meraki Go products. To better serve
your networking needs, we will continue innovating our
Cisco Meraki portfolio to make it even more accessible

to small businesses.”

Target devices - Meraki Go

== - I ©
9 e 3 G 0 oco

802.11ac APs Wired routers
e GR10 e GX20

EEPROM Product ID

U-Boot 2012.07-g03cdfel9%e00f
2017 - 11:59:45)

[local,local] (Aug 29

DRAM: 498 MiB

machid 0x8010001
Product: meraki Fairyfly
NAND: ONFI device found
ID = 1d80f101

Vendor = 1

Device = f1l

128 MiB

Using default environment

In: serial

Out: serial

Err: serial

machid: 8010001

ubiO: (removed for space)

Read 0 bytes from volume part.safe to 84000000

U-Boot 2012.07-g03cdfel%9e00f [local,local]

2017 - 11:59:45)

(Aug 29

DRAM: 498 MiB

machid 0x8010001

ERROR: Unknown board
NAND: ONFI device found
ID = 1d80f101

Vendor = 1

Device = f1l

128 MiB

Using default environment

In: serial

Out: serial

Err: serial

machid: 8010001

ubiO: (removed for space)

Read 0 bytes from volume part.safe to 84000000
No size specified -> Using max size (3284992)
Booting kernel from FIT Image at 84000000
Using 'config@l' configuration
Verifying Hash Integrity
sha384,secp384rl:wired-arm-gca-RT-SECP384R1 1l-rel+

Meraki Go: replace U-Boot?

U-Boot 2012.07-g03cdfel9%e00f
2017 - 11:59:45)

[local,local] (Aug 29

DRAM: 498 MiB

machid 0x8010001
Product: meraki Fairyfly
NAND: ONFI device found
ID 1d80f101

Vendor = 1

Device = f1l

128 MiB

Using default environment

In: serial

Out: serial

Err: serial

machid: 8010001

ubiO: (removed for space)

Read 0 bytes from volume part.safe to 84000000

U-Boot 2017.07-RELEASE-g78ed34£31579
- 07:43:44 -0700)

(Sep 29 2017

DRAM: 242 MiB

machid 0x8010001
Product: meraki Stinkbug
NAND: ONFI device found
128 MiB

Using default environment

In: serial

Out: serial

Err: serial

machid: 8010001

ubiO: (removed for space)

Read 0 bytes from volume part.safe to 84000000
No size specified -> Using max size (14966784)
Wrong Image Format for bootm command

ERROR: can't get kernel image!

Read 0 bytes from volume part.old to 84000000
No size specified -> Using max size (1130905
Wrong Image Format for bootm command
ERROR: can't get kernel image!
resetting

Meraki Go devices affected

Device Vulnerable Device Vulnerable
GX20 (Z3) GR10 (MR20)

GX50 (MX67) X GR60 (MR70) (probably)

Target devices

802.11ax APs

e MR36

WiFi 6 u-boot

uStack_c = param_2; .
o No source code, Meraki have not
if| (product_number < 0x1@) { F)r()\/i(jEECj it

param_3 = 1;

param_4 = 1 << (product_number & @xff) & @xb4@e;
if (param_4 != 0) {
Teturn @;
}
}
FUN_4a90b980(DAT_4a390252@,DAT_4a90251c) ;
FUN_4a93a868(DAT_4a902524 ,extraout_rl,param_3,param_4);
ppuvard = (uint **)@xi;
puvar7 = (uint *)((int)&uStack_c + 3);
uVar9 = FUN_42900e18(8,7,puVar7,1);
pivar3 = (int *)((ulonglong)uVvar9 >> @x20);
if ((int *)uvarg != (int *)@x0) {
FUN_4a93a868(DAT_4a%98256¢, (int *)uVar9,puVar7,ppuVars);
goto LAB_4a902448;

}

MR36 (IPQ807x)

U-Boot 2018.01-RELEASE-gb0bd058b3f (Nov 25 2019 -
16:41:18 -0800)

DRAM: 1020 MiB

Setting bus to 0

Valid chip addresses: 56
Meraki Product (major num): 56
NAND: ONFI device found

256 MiB

Using default environment

In: serial@78B3000
Out: serial@78B3000
Err: serial@78B3000

Device Tree: QCA, IPQ807x-ACO1
machid: 8010009
ubiO: (removed for space)

Secure boot enabled.

Read 0 bytes from volume part.safe to 50000000
No size specified -> Using max size (28778496)
Validating 1b71900 bytes @ addr 50000000

Valid image

U-Boot 2018.01-RELEASE-gb0bd058b3f (Nov 25 2019 -
16:41:18 -0800)

DRAM: 1020 MiB

Setting bus to 0

Valid chip addresses: 56
Meraki Product (major num): 1
NAND: ONFI device found

256 MiB

Using default environment

In: serial@78B3000
Out: serial@78B3000
Err: serial@78B3000

Device Tree: QCA, IPQ807x-ACO1
machid: 8010009

ubiO: (removed for space)

Read 0 bytes from volume part.safe to 50000000
No size specified -> Using max size (28778496)
Wrong Image Format for bootm command
ERROR: can't get kernel image!

Read 0 bytes from volume part.old to 50000
No size specified -> Using max size (2605

Meraki 802.11ax devices affected

Device Vulnerable

MR36

MR44 (unverified; probably)
MR46 (unverified; probably)
MR56 (unverified; probably)

ES

SBL

J

U-Boot

~

check/force secure
boot on

boot diagnostic }

boot part.new if
upgrading

boot_meraki_gca

if node specific
unlock exists,
chainload u-boot

run boot_signedpart

Devices support bootloader
unlocking...

But Meraki have zero incentive
to support this

Regulatory solution wen?

Shipping a secure device checklist

e Disable u-boot command line
o CONFIG_CMDLINE=n

e Use encrypted autoboot option
o CONFIG_AUTOBOOT_ENCRYPTION

e Compile the environment into u-boot
o CONFIG_ENV_IS_NOWHERE=y

e Use anti-rollback features!
o Don't allow the user to flash an older (vulnerable) version of your bootloader

e Don't ship encryption keys in your frmware
o Use secure storage (enclave/TZ) in the SoC

B2B due diligence

e Ask your vendor for their GPL source code
e Source code is easier to scan for vulnerabilities than binaries

e Your vendor might not even have it themselves (subcontracting)
o Gives you insight into how your vendor manages updates and patching (or doesn't)

e If your vendor won't comply with GPL license, what other things are they
infringing?

Responsible disclosure?

e Meraki have a bug bounty operated by BugCrowd

e Both Meraki and BugCrowd have had issues with their disclosure programs
o Ignored/invalid reports, fixing the issue without a pay-out

e Avoiding e-waste is more valuable than their pay-out (max S10Kk)

Vulnerabilities rewarded Validation within Average payout

396 5 days $3,321.42

75% of submissions are accepted or rejected within 5 days last 3 months

Responsible disclosure: NDA

By participating in the Program, investigating a potential vulnerability, or
submitting a vulnerability, you affirm that you have not disclosed and agree that
you will not disclose the vulnerability to anyone other than Cisco Meraki.

Absent Cisco Meraki's prior written consent, any disclosure outside of this process
would violate this Agreement. You agree that money damages may not be a
sufficient remedy for a breach of this paragraph by you and that Cisco Meraki will
be entitled to specific performance as a remedy for any such breach.

https://bugcrowd.com/engagements/ciscomeraki

Responsible disclosure: Not in-scope

e Deficiencies in a security feature in an on-prem product.
o Secure boot is a security feature, the devices are on-prem

e Any attack which renders the device permanently inoperable
o Devices will not boot their signed firmware release after modification

e Any vulnerability not present in the most recent beta firmware of a product
o The most recent U-Boot release does remove the exploit, but you can always roll-back

e Any hardware bugs which require a debugger to recreate
o Hardware programming tools are required to reprogram the device

Meraki GPL compliance

e |It's not good:
o No written offer for source code with their products
o No documented way to request GPL source code
o Requests take years to “process”

e If you contributed to

O Ll nux Go gle site:meraki.com GPL source code X s

9
Jel

O U B O Ot Free Images Videos News Maps Books Flights Finance

o Busybox
About 2 results (0,17 seconds)
e Please getin touch! D o s

Re: EAP-TTLS or PAP for Wired Port Security

I've been campaigning for a working solution to how users Authenticate for wired port security,
and it's sort deflating that the industry standard methods ...

meraki.com
https://community.meraki.com > Switching > EAP-TT... }

EAP-TTLS or PAP for Wired Port Security

I've been campaigning for a working solution to how users Authenticate for wired port security,
and it's sort deflating that the industry standard.

62

Defeating Planned Obsolescence for Cisco Meraki Switches

Thank you!

e Thanks to OrangeCon for providing me a platform
e Holding vendors accountable for software licenses they use

e Considering user freedom when you ship a device with secure
boot

Questions?

GitHub: halmartin

Email; halmartin@amail.com

Website: watchmysys.com

Fediverse:
@hal9000@infosec.exchange

https://github.com/halmartin/
mailto:halmartin@gmail.com
https://watchmysys.com
https://infosec.exchange/@hal9000

